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This paper discusses a cryptographic protocol to evaluate an AND-gate such that
a party can keep his or her input bit secret from the other party. Such a protocol
is of interest, because it can be generalized to any logical circuit for any number
of participants. A formal statement of this generalization reads as follows: n
participants want to compute together a function f(z1, 2, ..., zn) with z; being
their inputs; nobody wants to reveal information about his or her input except
what can be logically be deduced from one's input and the output. The paper
contains no new results but provides an illustration of a sub-field of cryptography,
and describes several interesting protocols and protocol design techniques.

1. INTRODUCTION

Suppose Alice and Bob meet for the first time. They both want to find out
whether they are interested in each other, so both engage in a cryptographic
protocol transmitted in infra-red through their watches. The protocol has
to be such that if both parties show interest they find out, but if one party
isn’t he or she cannot find out whether the other person was interested. This
problem, called the match-making problem, was raised by David Stodolsky, a
social scientist with strong interest in privacy protection, when he visited the
CWI a few months after the Crypto Course was held.

Personally I never understood how a cryptographic protocol could be of
any help in solving the match-making problem. I had visions of Alice and
Bob nervously fumbling their watches, though this is just an implementation
problem (some people expect that in the future humans will have an infra-red
sensor implanted [33]). But what about one party’s “Ha! Just checking! Ciao!”
(or the less subtle “Mmm, now that I have come closer I change my mind”)?
There is no penalty for defecting, as game theorists would say.
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But still, the match-making problem was extremely relevant, because it is
just a disguised form of an evaluation of an AND-gate in which the input of
a party is kept secret, except from what can be inferred from the output. If
this problem were solved it could lead to solving the generalized problem of
evaluating any Boolean circuit consisting of AND- and NOT-gates. For many
encryption schemes it was clear how to implement a NOT-gate, but the AND-
gate formed the bottleneck.

Around that time protocols existed for some specific problems, like the mil-
lionaires’ problem [38] (two millionaires want to find out who is richest without
revealing their wealth), how to play poker [36] [14] and how to hold secure
elections [12]. These protocols take advantage of special algebraic properties of
the encryption schemes used. Also, Zero-Knowledge had just been defined [28],
and people were coming up with protocols in which Alice can convince Bob
that she knows a satisfying assignment for any Boolean circuit [7, 8, 10, 23].
(Note that in these kind of protocols only one party provides an input to the
circuit, which makes it easier to handle than the match-making problem.)

Around 1987 the first solutions to the match-making problem and its gener-
alizations began to appear, resulting in a true avalanche of papers in subsequent
years. To see why, let us first state the generalization of the match-making
problem in a more formal way.

Private Multi-Party Computation (PMPC):

n participants want to compute together a function f(zi,zs,...,2,) with z;
being their inputs. Nobody wants to reveal information about his input except
what can be logically deduced from the output, y.

Clearly this problem can be solved if a party trusted by all n participants
(like a judge, or notary public) is present: everybody just hands his input to
this trusted party, who does the computation and announces the result. The
question is to obtain the same functionality without a trusted party, under the
assumption that participants are connected through some transmission channel.

The function f can be a randomized function: participants can provide a
random string as part of their input. When f takes the exclusive-or (XOR)
of n random bits, one provided by each participant, a trusted random bit is
obtained when at least one participant is honest. Furthermore, everybody can
learn the output string y. Private output can be obtained when f considers
the random input string of a participant as a private key and XORs (parts of)
the resulting string y using this key.

Observe that all the aforementioned protocols (millionaires, poker, voting)
are special instances of PMPC, and many other cryptographic problems can
be expressed this way. For instance, in mutual identification [18] two parties
want to verify they possess the same string. This can be expressed as a private
computation of f(z1,z2) = [21 = 23], where = denotes logical identity.

Protocols for PMPC have been studied extensively at the end of the 1980s and
have several aliases, like secure (or secret) distributed computation, or oblivious
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circuit evaluation. To do justice to all the researchers that contributed to this
problem is beyond the scope of this paper; for a more detailed overview see
[21]. But let us briefly sketch four issues involved: underlying assumptions,
protocol structure, security properties and resources needed.

Any protocol for PMPC needs an assumption in order to work; two dishonest
parties with unrestricted computational resources cannot engage in a meaning-
ful cryptographic protocol. Broadly speaking, we can distinguish three types
of assumptions:

Participants are computational restricted: Protocols for PMPC can be constructed
if we assume that all the participants have only restricted computational
resources and that computationally hard problems exist. Here the hard
problem can be of a specific nature and possess specific algebraic prop-
erties that makes the protocol implementation easier; many of the earlier
solutions were of this kind [22, 19, 25]. Some protocols used the more gen-
eral assumption that one-way functions exist [24] (g is a one-way function
if g is easy to compute whereas g—! is hard to compute; if P = NP then
one-way functions cannot exist).

The majority of participants are honest: If we assume that a reliable broadcast
channel exists, that each pair of participants has a private communication
channel and that at least %n (later improved to %n) participants are honest,
then there exist protocols for multi-party computations [9, 4, 35, 3, 1]. All
these protocols are based on secret sharing schemes, in which a participants
breaks his secret in n — 1 shares which he gives to the others. These secret
sharing schemes have the property that a certain quorum is needed to
reconstruct the secret from the shares, but a smaller number of (dishonest)
participants can gain no information about the secret.

Participants are connected by error-prone channels: Usually we assume that
when two participants communicate, the transmission of bits is error-less:
a bit sent by one party equals the bit received by the other. In practice
error-correcting codes are applied to guarantee this property. However, we
can abandon this assumption and use this property, the fact that a com-
munication channel may lose or invert its bits, in favor of cryptography.
For instance, in the theoretical notion of Oblivious Transfer [34, 18] it is
assumed that half of the bits transmitted by a party just disappear; the
other party receives a “?”. It has been proven that Oblivious Transfer is
sufficient for obtaining a PMPC protocol [15, 29, 30, 35, 26, 13]. More prac-
tically, Oblivious Transfer can be implemented on top of a Noisy Channel
[17, 16] or on a Quantum Channel [5].

It turns out that most protocols represent the function f by a Boolean
circuit and they often exhibit the following overall structure:

Initialization phase: All participants agree on the circuit to be evaluated and
on all parameters of the protocol. Some protocols use pre-computations to
speed up the computation phase.
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Input phase: Each participant provides its input in an encrypted way, so as to
facilitate the private computation.

Computation phase: The participants evaluate the gates that constitute the
circuit sequentially, and intermediate bits are encrypted in a way that no-
body can learn their value.

Revelation phase: The participants decrypt and learn the output bits.
The following security properties are of importance in a protocol for PMPC:

Correctness: when all participants are honest, the output of the protocol is
the same as the function it is emulating.

Privacy: no coalition of n’ participants can learn information about the input
of an honest participant if he does not cooperate, except from what can be
deduced logically from the coalition’s inputs and the output.

Honesty: no coalition of n' participants can make an honest participant accept
an output that is not equal to what it should be.

Fairness: participants should learn ¥ i.e. no participant should be allowed to
learn the output and quit, leaving the others without y.

Resilience: this reflects the protocol’s ability to complete the computation of
f if several participants stop cooperating during the protocol.

Clearly some of these properties are conflicting (like privacy and resilience)
and trade-offs have to be made (like choosing the values for n’ and n'"). Coming
up with the right definitions for these security properties under the aforemen-
tioned assumptions took much effort, and has not been completely resolved.
For instance, defining privacy when the participants are computationally re-
stricted is intrinsically different from the case where they are unrestricted. The
fairness problem has been studied early [31] and has been elegantly solved [11],
at least theoretically. More recently, people have come up with a general model
that tries to encompass all the various properties and assumptions [2, 1, 32].
However, with the advent of quantum protocols these models need more study.

Yet another issue is the amount of resources needed [21]. In other words, one
can try to express and optimize the number of elementary operation, protocol
rounds, messages sent, etc. as a function of the input size, circuit size, the
number of participants, the level of security desired, etc.

This concludes the brief overview of viewpoints to study protocols for PMPC.
The remainder of this paper will be devoted to introducing one particular pro-
tocol to evaluate an AND-gate (taken from [19]). This example was chosen be-
cause the encrypted representation of the AND-gate is rather one-to-one. After
some necessary number theory has been introduced, several simpler protocols
will be explained. Apart from being interesting in themselves, these protocols
introduce general protocol design principles that will be useful in explaining
the final protocol.
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2. THE MATCH-MAKING PROTOCOL

2.1. Some number theory

For the protocol presented here, we need to recall some elementary facts from
number theory. Let P be a prime number. Then define the Legendre-symbol
Lp(a) = @ = mod P. From now on we ignore the non-interesting case that a
is an integer multiple of P. It is well-known that L is a homomorphism from
the multiplicative group Z% to {—1,1}. (Remember that a homomorphism
is a function that partially preserves the group operation. In this particular
example we have Lp(a xb) = Lp(a)*x Lp(b). Here * denotes multiplication
modulo P and x denotes ordinary multiplication restricted to {—1,1}. When a
homomorphism is one-to-one it is called an isomorphism; this means that there
are different ways to represent two sets, but that they possess an identical group
structure. We will follow the usual convention in mathematics of not writing
multiplicative algebraic operators explicitly, except when clarity demands so.)
Euler proved that Lp(a) = 1iff 3z € Z : 22 =a mod P, so the homomorphism
L partitions the domain Z% in two subsets, called the quadratic residues resp.
quadratic non-residues modulo P. We often call « the square root of a, where
the modulus (here P, later V) is understood from the context.

From now on we set N = P(Q, with P and @) both prime. Then the Chinese
Remainder theorem implies that the multiplicative group Z7, is isomorphic to
the direct product of Z} and Z*Q. Therefore it is perfectly meaningful to define
the function J : Z — {-1,1}; Jn(a) = Lp(a)Lg(a). Surprisingly, Jy(a),
called the Jacobi-symbol of ¢ modulo N, can be computed very efficiently
without knowing the prime decomposition of N.

In the remainder of this paper we will restrict ourselves to the elements of
Z’y that have Jacobi-symbol 1, so we write Zy(+1) = {a € Z} : Jy(a) = 1}.
By definition of J we find that Jy(a) =1 iff Lp(a) = Lg(a) =1 or Lg(a) =
Lo(a) = =1, so Z(+1) is partitioned into quadratic residues and quadratic
non-residues, denoted as QR and QNRy, respectively.

Now we are ready to state the computational assumption on which the
protocol presented here is based. It was first stated and used by Goldwasser
and Micali; see [27] for a more formal statement.

Quadratic Residuosity Assumption(QRA): When N is the product of two primes,
there exists no efficient algorithm to distinguish QR and QNRy when the fac-
torization of N is unknown.

Note that an efficient algorithm for factoring N implies an efficient algo-
rithm to distinguish Qry and QNRy (compute the Legendre-symbol Lp(a))
but the reverse is not known to be true, so QRA is stronger than assuming
that factoring is hard. Note also that we have discarded half of the elements
of Z%, namely those for which Jy(a) = —1. These elements are clearly all
non-residues modulo N because either Lp(a) = —1 or Lp(a) = —1, but they
can play no meaningful role in the QRA, since their non-residuosity can be
determined without factoring N by computing their Jacobi-symbol Jy(a).
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2.2. Representing bits by numbers

The preceding exercise in number theory gives us a natural representation for
bits: a 0 corresponds to an arbitrary element in QRy, and a 1 corresponds
to an arbitrary element in QNRy. Moreover, if z is known to be in QNRy, a
bit b € {0,1} can be encrypted by picking a random r € Z};, and computing
e = E(b,7) = 2%r%, all computations modulo N. Note that the product (or
quotient) of two encryptions belongs to the same class (QRy or QNRy) as the
exclusive-or of the two original bits: E(b;)E(bs) mod N and E(b;®bs) have
the same residuosity. Here @ denotes exclusive-or, i.e. addition modulo 2.

From now on we suppose that Alice knows the prime decomposition of IV,
and Bob doesn’t. Note that both can use the encryption function F, but only
Alice can do the inverse decryption operation, D. Explicitly, to decrypt e,
Alice computes Lp(e) and re-interprets the result from {1,—1} in {0,1}. So
this encryption scheme, known as probabilistic encryption [27], can be used to
send messages from Bob to Alice. It may seem very inefficient, but it has very
interesting theoretical properties.

However, throughout this paper we will not use E and D to establish secure
communication, but to obtain a bit commitment scheme. This cryptographic
primitive can be explained using an analogy with paper and envelopes. In the
first step of a bit commitment Alice (say) writes a 0 or a 1 on a piece of paper,
puts the paper inside an envelope, seals the envelope and puts it on the table.
In the second step Alice opens the envelope and shows the number written on
the paper to Bob. The point to observe is that once the envelope is sealed,
Alice cannot change her mind on the bit, but Bob does not yet know the bit.

Surprisingly, extremely powerful protocols can be constructed using just this
simple primitive. A very simple example is a protocol known as coin-flipping
by telephone. As the story goes [6], Alice and Bob are getting divorced and
want to divide their common belongings by flipping a coin. They only speak
over the telephone (or communicate by email) but they do not trust each other.
As can be easily verified, the following protocol resolves their problem.

ProrocoL 1 ( HONESTCOINFLIP )

1: Alice chooses a random bit b € {0, 1}, encrypts it using r, and
sends e —E(b,r) to Bob.

2: Bob chooses a random bit b’ € {0,1} and sends it to Alice.

3: Alice sends b and r to Bob. The value of the honest coin flip is b®b’.

However, before we can use E as a bit commitment scheme we must resolve
an important point. A priori Bob has no reason to believe that IV is indeed of
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the form P(Q that z is indeed a non-residue modulo N. There are two ways to
resolve this point. For the first solution observe that if N has more than two
prime factors, than at most % of the elements in Zyare quadratic residues. So
Bob will be convinced that N has at most two prime factors if Alice shows that
a % fraction of a large collection of elements from Zyrandomly chosen by Bob
are quadratic residues. Here Alice and Bob must use PROVEKNOWROOT, to
be introduced later.

In addition, Alice and Bob execute the following protocol from [28] to prove
that z € QNRy. The notation v €S means that an element from the finite set
S is picked at random according to the uniform distribution, and its value is
assigned to the variable v.

ProT1ocoL 2 ( PROVEQNR(z, N) )

0: Alice sends z to Bob.
REPEAT k TIMES:

1: Bob chooses b€r{0,1} and r €rZ (+1), computes e —E(b, )
and sends e to Alice.

2: Alice decrypts the message received, b’ < D(e), and sends b’ to Bob.

3: Bob accepts only if b =b'.
ENDREPEAT

The point to observe is that if Alice cheats and chooses z € QRy, she only
receives quadratic residues in step 2 and has to guess b'. So in each round
a cheating Alice will be caught with probability %, which reduces to only %k
after k repetitions or rounds. Often k is called the security parameter: when the
amount of work increases linearly the probability for parties to cheat decreases
exponentially. This is a generally accepted criterion for a protocol to be “good”.

For an alternative way to verify that N and z are of the right form, see the
protocol explained in [37].

Given that z € QNRy both Alice and Bob can invert the value of a bit (i.e.
implement a NOT-gate) by multiplying with z: clearly E(NoT(b)) = zE(b). (In
the remainder of this paper = will be used to denote equality modulo N.)

2.3. Showing equality of encryptions

Both parties can easily convince the other of the equality of two encryptions
e1 = E(b,71) and ex = E(b,r3) because their quotient (or their product) must
be a quadratic residue: E(b,r1)E(b,r3)~" =2br2(2%r2)~' =(riry )2, So one
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party can convince the other simply by opening rﬂ’{l (mod N). Of course,
Alice can just decrypt two encryptions ey = E(by,71) and ea = E(by,r2) created
by Bob and see whether they are equal or not. But in some situations it can
be meaningful when Alice is convinced that Bob knows this fact too; it proves
that Bob has constructed e; and es using F, instead of having them picked in
some sneaky way.

ProT1ocoL 3 ( PROVEEQUAL(ey, e3, N) )
0: Alice sends e; «—F(b1,71) and ez —FE(b2,72) to Bob.
1: Alice sends F<—r1r;1 mod N

2: Bob accepts only if ejey ! = 72

Obviously only minor modifications of protocol PROVEEQUAL are needed to
make a protocol PROVEUNEQUAL.

2.4. Intermezzo: proving knowledge of a square root modulo N
It is important that in PROVEEQUAL Alice never shows the square root on
something she has not created herself. Moreover, suppose Alice uses the fol-
lowing insecure way to show to Bob that a number v is in QRy simply by
computing its square root w modulo N (i.e. w?=v) and sending w to Bob.
Then with probability % Bob can find the factorization of N, as follows. Bob
sends v =w? to Alice, where w is chosen at random. Then Bob receives a %
such that v=1w2%. However, v has two different square roots and with proba-
bility % he finds w #w'. (Here we count the square roots w and —w = (N — w)
as one root, since one can trivially be computed from the other.) But if Bob
learns two different square roots w and w he can factor N simply by computing
the greatest common divisor of w + @ and N, because w? =w? (mod N)=
(w+@)(w—w)=tN=> w+ad=t'Porw+o=1t"Q, for ¢,t,t" € Z.

So what we really need is a protocol in which Alice convinces Bob that she
knows a square root w of v without showing w to Bob. This is accomplished by
the following protocol [28, 20].

The reader can easily verify that if v is not in QR , Alice has a probability of %
of being caught in each round, since she has to be prepared for answering ¢ = 0
and ¢ = 1. The protocol convinces Bob because Alice’s capacity to answer
both challenges simultaneously implies that she indeed knows w. Secondly,
notice that under the assumption that factoring is hard neither Bob nor a
third, eavesdropping party Fve can learn w from the protocol, because the only
time Bob receives something based on w, it has been multiplied by a random
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Pror1ocoL 4 ( PRovEKNOWRoOOT(v, N) )

0: Alice has or creates w, computes v —w? mod N and sends v to Bob.

REPEAT k TIMES:

1: Alice chooses W €rZ%, computes 7 +—w> mod N and sends & to Bob
2: Bob chooses a challenge bit ¢ €g{0, 1} and announces ¢ to Bob.

3: If ¢ = 0 then Alice sends t —w. Otherwise she sends t «—ww mod N.

4: If ¢ = 0 then Bob accepts only if t2 =v. Otherwise he accepts
only if t2 =vv.

ENDREPEAT

number, which completely hides its value. This special property of protocol
PROVEKNOWROOT called Zero Knowledge, makes it perfectly suitable as a
basis for protocols for proofs of identity, in which a client (e.g. a PC, a smart-
card) has to identify itself to a host (a mainframe, a bank) [20].

Apart from being of interest in its own right, this small digression allows
us to get acquainted with a general mechanism to design protocols, called
CUT-AND-CHOOSE, named after the non-cryptographic protocol in which two
children have to split a cake: one cuts and the other chooses (the biggest half).
The general description of a CUT-AND-CHOOSE is as follows: Alice has or creates
an object O (in PROVEKNOWROOT this is w) which has a specific property P
(namely w is a square root modulo N). Let £(O) be an encryption of O. Alice
would like to use £(O), but Bob wants to be sure that it satisfies ﬁ, the property
of encrypted objects that corresponds with P. Therefore Alice creates a second
object O, encrypts it and sends it to Bob, who can issue two challenges: either
to verify that £(O) is indeed the encryption of an object O that satisfies P,
or to verify special relations between £(0) and £(O) that confirm they both
satisfy P. CUT-AND-CHOOSE is a very powerful technique, dozens of protocols
use it and the protocol to evaluate an AND-gate is no exception.

2.5. Choosing white and red balls

Let us return to the encryption function E secure under QRA. By using per-
mutations on several encrypted bits our abilities for making useful protocols
increases. Consider the following problem: Alice has a vase containing one
white ball and m — 1 red balls, and Bob is allowed to draw one ball. The
following protocol emulates this procedure using E. Let both b € {0,1}" and
r € (Zy)™ denote vectors of length m. Then E(b,r) denotes encryption of
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the entries of b, so its ith entry is of the form z%7? mod N. Furthermore, if
Sm denotes the group of permutations of length m and o € S,,, then o(b), for
instance, denotes the vector obtained by permuting the entries of b according
to o. The composition of permutations is written from right to left.

Pro1ocoL 5 ( PICKABALL )

0: Alice encrypts b—(1,0,...,0) € {0,1}™ using r €r(Zx)™, she chooses
0 €rSm and sends o(E(b,r)) to Bob.

REPEAT k TIMES:

1: Alice does exactly the same as in step 0 using different random choices
for 7; ErZy, @ €RSm. The result, 3(E(b,T)), is sent to Bob.

2: Bob chooses a challenge bit ¢ €g{0,1} and announces c to Alice.

3: If ¢ = 0 then Alice sends & and T.

. . - _ . 1
Otherwise Alice sends ¢ «—o5 ! and 7; «7r

O_(i)i“;(i) where ¢ = 1...m.
4: If c = 0 then Bob checks that the m encryptions received in step 1
indeed encrypt the vector b.
Otherwise Bob checks that 72 =72 722 where i = 1...m.

o) o)
ENDREPEAT

5: Bob picks i €g{l,...,m}.

6: Alice decrypts the ith component of o(E(b,r)), i.e.
she sends b; and r;, where j «—o 1 (3).

7: Bob verifies Alice’s decryption, and learns whether he picked the white
(b=1) or the red ball (b =0).

Observe the notational conventions used: the barred symbols created in step 1
denote copies of the original objects created in step 0, whereas the symbols with
a tilde denote the “quotients”. Furthermore note that, apart from steps 5, 6 and
7, the protocol structure of PICKABALL is identical to PROVEKNOWROOT, and
so are the reasons why the protocol is secure. Indeed, PICKABALL is another
example of a CUT-AND-CHOOSE. Observe that Bob only gets to see one entry
of b, the other entries remain encrypted. We could obtain a simpler protocol
if we were not so strict, but the capacity to hide the other entries of b is of
great value, as we will see. Obviously, this protocol can be easily generalized
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to picking one or several balls from a set that contains k& white and m — k red

balls.

2.6. Blinding of encryptions

Another essential ingredient for the final protocol is the blinding property.
Suppose that in an earlier stage Bob has received two encryptions e; and es
from Alice. Bob can re-encrypt these encryptions using the function R defined
as ' = R(e,V/,r') = ez¥ 1> mod N, where b’ € {0,1} and #' € Z’ are chosen
randomly. In the envelope analogy it is as if Bob is able to change the value
of the number written on the paper, even though he does not know what the
number is. In addition, Bob replaces the old envelope with a new one. Even
though this envelope is transparent to Alice, she does not know which number
she originally put in the envelope.

So if Bob sends the two re-encrypted bits e} and e}, back to Alice in random
order, Alice is not able to determine the correspondence between the encryp-
tions sent (e; and e2) and received (e} and e}) because of the randomly chosen

Y, r1, by and 75, even though Alice is able to decrypt. Obviously this tech-
nique, called blinding, can be extended from two to any number of encryptions
€;.

In fact, the blinding property allows us to run the protocol PICKABALL
with the roles of Alice and Bob reversed, where Alice picks a ball. Steps 0 to
4 are copied from PICKABALL. Thereupon Bob will use blinding as has just
been introduced. Symbols that have a prime (') will denote objects created by

Bob.

2.7. Fvaluation of an AND-gate

After all these preparations the stage is finally set to discuss the protocol for
the match-making problem, EVALUATEANDGATE. We will represent an AND-
gate by a matrix, so let T be a 4 X 3-matrix that represents an AND-gate i.e.
T has rows (0,0, 0),(0,1,0),(1,0,0),(1,1,1). We assume that the first column
represents Alice’s input, the second Bob’s input, and the third their common
output.

The purpose of the full protocol is that Alice and Bob together create a
double encrypted version of T, denoted T”, from which they can choose one
row that will correspond to their inputs, so they both learn the output bit
after having decrypted the output bit for that column. The output column will
be encrypted twice, once by Alice and once by Bob. The input columns are
encrypted once; each party encrypts her or his input column.

Steps 0 to 9 of EVALUATEANDGATE and REVERSEPICKABALL are very
similar, except that the object to be encrypted is not a vector b, but are 4 x 3-
matrices W, U and (for Bob) V. Here W denotes T with some of its entries
XORed as to hide the input and output columns using U and V. We will
describe the protocol in three parts: first Alice creates an intermediate object
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ProTocoL 6 ( REVERSEPICKABALL )

Steps 0-4 from PICKABALL are executed.
Call 0(E(b)) as received by Bob b.

5: Bob re-encrypts b using b’ and r', he chooses ¢’ €g S and
sends o' (R(b,b', 1)) to Alice.

REPEAT k TIMES:

6: Bob does exactly the same as in step 5 using different random choices
for b', ', and &'. The result, 6'(R(b,5’,1‘")) is sent to Alice.

7: Alice chooses a challenge bit c€r{0,1} and announces c to Bob.

8: If ¢ = 0 then Bob sends ¢’ and ©'.

Otherwise Bob sends &' «¢'(5') ™" and 7, ', (7)

! wherei =1..m.
OO

9: If ¢ = 0 then Alice checks that the m encryptions received in step 6
indeed encrypt the vector b.
Otherwise Alice checks that o’ (R(b,b’,r')) and &' (E(b,b’,#')) are both

indeed permuted re-encryptions of b.
ENDREPEAT
10: Alice picks i €r{l,...,m}.

11: Bob wundoes his re-encryption by showing b; and 7;, where
j ("))

12: Define b* —¢'(R(b,b’,r')). Alice computes a—D(b})®b; and learns
whether she picked the white or the red ball.

T (similar to b in REVERSEPICKABALL), then Bob creates T*, and finally
Alice and Bob open the output bit together.
More precisely, to start Alice creates

0 0 0 Ul 0 us
0 1 0 Uy 0 us
W=TopU=
@ 1 0 0 @ ul 0 us
1 1 1 Uy 0 us

Here u; and us are chosen randomly from {0,1}, and ® means addition
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modulo 2 of corresponding entries in the matrices. The purpose of u; is to hide
Alice’s input, and of uz to hide the output.

Then Alice encrypts and permutes the rows of W and U according to a per-
mutation o €gSs. Alice and Bob perform a protocol identical to PICKABALL
to prove that T = o(E(W)) is constructed as described above. Here we have
dropped the random numbers r € Z used in the encryption function E from
the notation.

PROTOCOL 7 ( EVALUATEANDGATE: CONSTRUCT T )

0: Alice creates W «—T @ U, chooses o €rS4, computes
o(E(W)) and o(E(U)), and sends them to Bob.

REPEAT k TIMES:

1: Alice does exactly the same as in step 0 using different random choices
for @ €gS4 and for the 7’s used with E.
The result, 5(E(W)) and 6(E(U)), is sent to Bob.

2: Bob chooses a challenge bit ¢ €z{0,1} and announces c to Alice.

3: If ¢ = 0 then Alice sends &, W and U, and shows she encrypted them
honestly.

Otherwise Alice sends & <o~ and all the quotients needed for running
PROVEEQUAL and PROVEUNEQUAL on the corresponding entries of
o(E(W)), o(E(U)), versus (E(W)), a(E(TU)) .

4: If ¢ = 0 then Bob checks that the encryptions received in step 1 indeed
encrypt matrices W and U of the proper form.

Otherwise Bob checks that o(FE(W)) and o(E(U)) correspond to &(E(W))
and &(E(U)) respectively.

ENDREPEAT

Now it is Bob’s turn to take T = o(E(W)) and complete the construction of
T*, like in steps 5 to 9 from REVERSEPICKABALL. Bob will do to T something
identical to what Alice did to T, however, on encrypted bits. Bob chooses a
matrix U’ = (0,u}, u}) to hide his input column and the output column. He
also chooses an additional matrix V' = (0,0, (v|5, vhs,v}3,v)3)). Then Bob
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computes W' = T ® E(ﬁ’) ® E(V') while using Alice’s encryption scheme.

£11 £12 513 u_gz
R A x 7
W' = tay too tog ® | U3 |
= = ~ ~ !
31 32 t33 | U3 |
R A R 7
(78] 7D 43 |43 ]
7
L1 ol
1 1 |v)
® o
L1 juag
!

Here the boxes represent the fact that we are dealing with bits encrypted using
E, while ® represents multiplication modulo N of corresponding matrix entries.

Bob will choose a permutation o’ and send T* = o/ (R(W")), ¢/(E'(U"))
and o'(E'(V")) to Alice. E' denotes an encryption function that only Bob can
decrypt. Bob must convince Alice that he has constructed T* honestly, and to
that end they execute a protocol identical to step 5-9 of REVERSEPICKABALL.

Now let us briefly summarize what T* looks like: both parties have permuted
the rows of T using o and ¢'; the output column is hidden by each party (by
U and U'); and on top of that also blinded (by V'). The input columns of T*
are only hidden by one party, the owner. This enables the parties to find the
output of the AND on input x4 from Alice and zp from Bob.

In fact, EVALUATEANDGATE implements much more than the simple match-
making protocol:

— Any logical gate can be implemented using this protocol.

— Any number of participants can perform this protocol, since any party can
join in and play the role of Bob.

— Observe that V' is indispensable; without it Alice is able to find out which
permutation ¢’ Bob has used. EVALUATEANDGATE can be used with al-
ternative choices for the encryption functions F, in particular encryption
functions that Bob can decrypt. In this case Alice, instead of Bob, needs to
encrypt the bits of the output column separately using a matrix V similar
to V'. For more details, see [19)].

— The protocol can be extended to evaluate any logical circuit consisting of
many gates, T;. The only restriction is that when 7T} is connected to T5,
that the inversion bit used to hide the output column of T be identical to
the inversion bit of the corresponding input column of 75. This is exactly
the reason why ug and uf§ were introduced: they can hide intermediate
results when a circuit is evaluated. In the case only one gate is evaluated
they are redundant. Again, for more details, see [19].
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ProToCOL 7 ( EVALUATEANDGATE: CONSTRUCT T )

5: Bob creates W' —T ® E(U')® E(V'), chooses o' €rS4, computes
o' (R(W")), ¢'(E'(U")), o' (E'(V'")), and sends them to Alice.

REPEAT k TIMES:

6: Bob does exactly the same as in step 0 using different random choices
!

for ¥, €pZy, & €rSs. The result, &' (R(W)), &' (E'(T)), & (E'(V)),
is sent to Alice.

7: Alice chooses a challenge bit c€r{0,1} and announces c to Bob.

8: If ¢ = 0 then Bob sends &' and W’, U and V’, and
shows he encrypted them honestly.
Otherwise Bob sends &' «o'(5')™" and all the quotients

needed for running PROVEEQUAL and PROVEUNEQUAL

9: If ¢ = 0 then Alice checks that the encryptions received in step 1
indeed encrypt matrices W, U and V of the proper form.
Otherwise Alice checks that o'(E(W")), o/(E'(U')) and o' (E' (V"))
correspond to &' (E(W')), &' (E'(U")) and &' (E'(V')) respectively.
ENDREPEAT
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Pro1ocoL 7 ( EVALUATEANDGATE: OPENING THE OUTPUT BIT )

10: Alice announces the indices for the two rows that correspond
to £4®u1 in the first column of T™.

11: From these two indices Bob announces the index of the row that
corresponds to zp®u, in the second column. Let us call this index 4 and
let j —(o')"1(4).

12: Bob opens E'(uj3) and E'(v}3).

13: Alice opens E(u3) and decrypts d —D(t3).
Then za A B HdEBugEBugEij'-g,.
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